Linear Regression Prediction of future values in Python using Scatter Plot - Machine Learning
We are Importing Necessary Libraries for this project
import pandas as pandas
import numpy as numpy
import matplotlib.pyplot as pyplot
from sklearn.linear_model import LinearRegression
Importing Data using Pandas library and creating table dataframe
data = pandas.read_csv('python_linear_regression_prediction_python_data.csv')
print(data)
Assigning Input / Independent columns to X variable and Assigning Output / Dependent Column to Y Variable
x = data[['Experience_Years','Calls_Made','Meetings_Conducted']]
y = data['Sales_Amount']
Asking Linear Regression Model to learn data from X and Y variables
model = LinearRegression()
model.fit(x,y)
Printing Coefficient and Intercept to check their values
print("Coefficient:",model.coef_)
print("Intercept",model.intercept_)
Adding New Inputs / Independent Values to predict Output / Dependent values
new_data = pandas.DataFrame({ 'Experience_Years': [8, 12, 15], 'Calls_Made': [105, 150, 180], 'Meetings_Conducted': [10, 14, 18]})
Predicting the Output for new Inputs using Model
Predicted_y = model.predict(new_data)
print(Predicted_y)
Showing both the Original Input and Output as well as New Input and predicted output, in a Scatter plot graph
pyplot.figure(figsize=(15,8))
pyplot.scatter(data['Experience_Years'],data['Sales_Amount'], color='blue', label='Actual Sales')
pyplot.scatter(new_data['Experience_Years'],Predicted_y,color='red',label='Predicted Sales')
pyplot.legend()
pyplot.xlabel('Experience Years')
pyplot.ylabel('Sales Amount')
pyplot.show()
Comments
Post a Comment